Missouri University of Science and Technology (MST) has developed a handheld camera that uses microwave signals to non-destructively peek inside materials and structures in real time.
The compact system can produce synthetically focused images of objects - at different planes in front of the camera - at speeds of up to 30 images per second. A laptop computer then collects the signal and displays the image in real-time for review. The entire system, powered by a battery similar to the size used in laptops, can run for several hours, rendering it portable.
"In the not-so-distant future, the technology may be customized to address many critical inspection needs, including detecting defects in thermal insulating materials that are found in spacecraft heat insulating foam and tiles, space habitat structures, aircraft radomes and composite-strengthened concrete bridge members," says Dr. Reza Zoughi, the Schlumberger Distinguished Professor of Electrical Engineering at Missouri S&T, who is leading the research effort.
The team believe that their work could help medical professionals detect and monitor a variety of skin conditions in humans, including cancer and burns, security personnel could detect concealed contraband (such as weapons) or again home owners could detect termite damage.
The idea for developing a real-time, portable camera came to Zoughi in 1998 while he was on sabbatical in France. In 2007, Zoughi's research group completed the first prototype and has spent the past two years increasing its size and overall efficiency.
"Unlike X-rays, microwaves are non-ionizing and may cause some heating effect," Zoughi says. "However, the high sensitivity and other characteristics of this camera enables it to operate at a low-power level."
More:
Various new sources included Yahoo Alerts, Indian and Asian press and physorg.com in particular for the video presentation and original new and web sources
PHYSORG
"The idea for developing a real-time, portable camera came to Zoughi in 1998 while he was on sabbatical in France. In 2007, Zoughi's research group completed the first prototype and has spent the past two years increasing its size and overall efficiency.
"Unlike X-rays, microwaves are non-ionizing and may cause some heating effect," Zoughi says. "However, the high sensitivity and other characteristics of this camera enables it to operate at a low-power level.""
- New research brings 'invisible' into view (w/ Video) (afficher sur Google Sidewiki)
0 commentaires:
Post a Comment